CMSC201 Computer Science I for Majors

Lecture 22 – Binary (and More)

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

www.umbc.edu

Last Class We Covered

- Dictionaries
 - Creating
 - Accessing
 - Manipulating
 - Methods
- Dictionaries vs Lists

AN HONORS UNIVERSITY IN MARYLAND

Any Questions from Last Time?

Today's Objectives

- To understand how data is represented and stored in memory
 - -Binary numbers
 - Floating point errors
 - -ASCII values
- To see the benefits of short circuit evaluation
- To learn about other programming languages

AN HONORS UNIVERSITY IN MARYLAND

Binary Numbers

Binary Numbers

- Computers store all information (code, text, images, sound,) as a binary representation

 "Binary" means only two parts: 0 and 1
- Specific formats for each file help the computer know what type of item/object it is
- But why use binary?

Decimal vs Binary

- Why do we use decimal numbers?
 Ones, tens, hundreds, thousands, etc.
- But computers don't have fingers...
 What do they have instead?

• They only have two states: "on" and "off"

Decimal Example

• How do we represent a number like 50,932?

2	x	10 ⁰	=	2
3	x	10 ¹	=	30
9	x	10 ²	=	900
0	X	10 ³	=	0000
5	X	104	=	50000
5	[ot	cal:		50932

Decimal uses 10 digits, so ...

Another Decimal Example

6	7	4	9	3
104	10 ³	10 ²	101	10 ⁰
10000	1000	100	10	1
60000	7000	400	90	3

60000+7000+400+90+3 = 67493

Binary Example

• Let's do the same with 10110 in binary

Binary uses 2 digits, so our base isn't 10, but...

Binary to Decimal Conversion

- Step 1: Draw Conversion Box
- Step 2: Enter Binary Number
- Step 3: Multiply
- Step 4: Add

1	0	0	0	1	1	0	1
27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
128	0	0	0	8	4	0	1

128 + 0 + 0 + 0 + 8 + 4 + 0 + 1 = 141

Exercise: Converting From Binary

 What are the decimals equivalents of... 101 1111 100000 Longer binary numbers are often broken into blocks of 101010 four digits for the sake of 0010 1010 readability

1000 0000

Exercise: Converting From Binary

- What are the decimals equivalents of...
 - 101 = 4+0+1 = 5
 - 1111 = 8+4+2+1 = 15
 - 100000 = 32 + 0 + 0 + 0 + 0 = 32
 - 101010 = 32+0+8+0+2+0 = 42
 - $0010 \ 1010 = 32 + 0 + 8 + 0 + 2 + 0 = 42$
 - $1000 \ 0000 = 128 + \ldots + 0 + 0 = 128$

Decimal to Binary Conversion

- Step 1: Draw Conversion Box
- Step 2: Compare decimal to highest binary value
- Step 3: If binary value is smaller, put a 1 there and subtract the value from the decimal number
- Step 4: Repeat until 0

27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
1	0	1	0	0	0	1	1

Convert 163 to binary

163-128 = 35 35-32 = 3 3-2=1 1-1=0

Converting to Binary

- What are the binary equivalents of...
 - 9
 - 27
 - 68

216

255

www.umbc.edu

Converting to Binary

- What are the binary equivalents of...
 - 9 = 1001 (or 8+1)
 - $= 0001 \ 1011 \ (or \ 16+8+2+1)$ 27
 - $68 = 0100 \ 0100 \ (or \ 64+4)$
 - $216 = 1101 \ 1000$
 - (or 128+64+16+8)
 - 255 = 1111 1111

(or 128+64+32+16+8+4+2+1)

Binary Tips and Tricks

- Some "sanity checking" rules for conversions:
- 1. Binary can only be 1 or 0
 - If you get "2" of something, it's wrong
- 2. Odd numbers <u>must</u> have a 1 in the ones column
 - Why? (And what's the rule for even numbers?)
- 3. Each column's value is the sum of <u>all</u> of the previous columns (to the right) plus one
 - In decimal, what column comes after 999?

AN HONORS UNIVERSITY IN MARYLAND

Floating Point Errors

Division: Floats and Integers

- Floats (decimals) and integers (whole numbers) behave in two different ways in Python
 - And in many other programming languages
- Biggest difference is how division works
 - Python 3 automatically performs decimal division
 - Have to explicitly call integer division
 - Floats also automatically perform decimal division

Division Examples

- What do the following expressions evaluate to?
 - 1. 4 / 3 = 1.33333333333333333

2.
$$4 / / 3 = 1$$

- 3. 4 // 3.0 = 1.0
- 4. 8 / 3 = 2.666666666666666666
- 5. 8 / 2 = 4.0
- 6. 5 / 7 = 0.7142857142857143
- 7. 5 // 7 = 0

Floating Point Errors

- - 3.14159265358979323846264338328...
- The same is true for base 2
 - 0.0001100110011001100... (0.1 in base 10)
- This leads to rounding errors with floats
 - General rule: Don't compare floats for equality after you've done division on them!

AN HONORS UNIVERSITY IN MARYLAND

ASCII Values

ASCII Values

- ASCII is how text is represented in computers
 Just like binary is how numbers are represented
- In ASCII, every character has a unique, individual numerical code
 - Lowercase and uppercase characters are separate
 - Codes go from 0 to 127
 - Why 127?

UMBC

AN HONORS UNIVERSITY IN MARYLAND

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	0	96	60	×
1	1	[START OF HEADING]	33	21	1.00	65	41	Α	97	61	а
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	с
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	(HORIZONTAL TAB)	41	29)	73	49	1	105	69	1
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	в	[VERTICAL TAB]	43	2B	+	75	4B	ĸ	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	10 C	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	v	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	У
26	1A	(SUBSTITUTE)	58	3A	1 C	90	5A	z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	۸	124	7C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]
			-			-					

NOR	"control"		I D			uppercase						
	characters TAE				3LE			letters				
D	ecimal He	ex Char		Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]		32	20	[SPACE]	64	40	0	96	60	·
1	1	[START OF F	HEADING]	33	21	1	65	41	Α	97	61	а
2	2	ISTART OF 1	EXT	34	22		66	42	В	98	62	b
3	3	IEND OF TE	AT J	30	23	# ¢	67	43		100	64	c
5	4	IENOURY)	ANSMISSIUNJ	37	24	⇒ %	69	44	F	101	65	0
6	6	IACKNOWLE	EDGE1	38	26	8	70	46	÷ .	102	66	f
7	7	[BELL]		39	27	ĩ.	71	47	G	103	67	a
8	8	[BACKSPACI	E]	40	28	(72	48	н	104	68	ĥ
9	9	(HORIZONT/	AL TAB)	41	29)	73	49	1	105	69	i i
10	A	[LINE FEED]		42	2A	*	74	4A	J	106	6A	j j
11	В	[VERTICAL 1	TAB]	43	2B	+	75	4B	к	107	6B	k
12	C	[FORM FEED	0]	44	2C	1.00	76	4C	L	108	6C	1 I I
13	D	[CARRIAGE	RETURN]	45	2D	•	77	4D	М	109	6D	m
14	E	[SHIFT OUT]		46	2E	:	78	4E	N	110	6E	n
15	F	[SHIFT IN]	5564851	47	2F	/	79	41	0	111	6F	0
10	10	[DAIA LINK]	ESCAPEJ	40	30	1	80	50	P	112	70	Р
19	11	IDEVICE CO	NTROL 21	50	32	2	82	52	e e	113	72	q
19	13	IDEVICE CO	NTROL 31	51	33	3	83	53	S	115	73	e .
20	14	IDEVICE CO	NTROL 41	52	34	4	84	54	т	116	74	+
21	15	INEGATIVE	ACKNOWLEDGE1	53	35	5	85	55	ů l	117	75	ù
22	16	[SYNCHRON	IOUS IDLE]	54	36	6	86	56	v	118	76	v
23	17	ENG OF TR	ANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]		56	38	8	88	58	Х	120	78	x
25	19	[END OF ME	DIUM]	57	39	9	89	59	Y	121	79	у
26	1A	(SUBSTITUT	E)	58	3A	÷	90	5A	z	122	7A	z
27	1B	[ESCAPE]		59	3B	;	91	5B	[123	7B	{
28	10	[FILE SEPAR	ATOR]	60	3C	<	92	5C	1	124	7C	
29	1D	GROUP SEF	PARATOR	61	3D	=	93	5D	1	125	7D	}
30	15	[RECORD SE	EPAKATORI PATORI	62	35	>	94	55	^	120	/E 75	~ (DEL)
51	11	UNIT SEPAR	AATOK]	03	5F	r .	95	JF.	-	127	76	[DEL]
				symbols &					1	low	erc	ase
				numbers						le	ttei	rs

Comparing Strings

- The values of the ASCII characters are used when comparing strings together
 - Which can lead to some "weird" results
 - >>> "cat" < "dog"

True

>>> "cat" < "Dog"

False

>>> "DOG" < "dog"

True

More on Comparing Strings

- Gets even more complex when you start adding in numbers and symbols
 - >>> "2" < "one"

True

>>> "good?" < "good!"

False

>>> "UK" < "U.K."

False

Rules for Comparisons

- To avoid (some) of these issues:
- Always use .lower() for comparing strings
- Pay attention to symbols
 - *e.g.*, spaces, hyphens, punctuation, etc.
 - Either remove them, or keep as part of the order

ASCII Characters to ASCII Values

- We can convert between ASCII characters and their values using ord() and chr()
- The **ord()** function takes in a <u>single</u> character, and returns its ASCII value
- The **chr()** function takes in an integer, and returns its ASCII character

Using chr() and ord()

- >>> chr(65)
- 'A'
- >>> chr(65+32)
- 'a'
- >>> ord('?')

63

>>> ord("d")

100

>>> ord("e")

101

AN HONORS UNIVERSITY IN MARYLAND

"Short Circuit" Evaluation

Review: Complex Expressions

We can put multiple operators together!
 bool4 = a and (b or c)

- What does Python do first?
 - Computes (b or c)
 - Computes **a and** the result

This isn't strictly true!

Short Circuit Evaluation

- Python tries to be efficient (*i.e.*, lazy), and so it won't do any more work than necessary
 - If the remainder of an expression won't change the outcome, Python doesn't look at it
 - This is called "short circuiting"
- "and" statements short circuit as soon as an expression evaluates to False
- "or" statements short circuit as soon as an expression evaluates to True

Short Circuiting – and

- Notice that in the expression:
 bool1 = a and (b or c)
- If a is False
- The rest of the expression doesn't matter
- Python will realize this, and if **a** is **False** won't bother with the rest of the expression

Short Circuiting – or

- Notice that in the expression:
 bool1 = a or (b or c)
- If a is True
- The rest of the expression doesn't matter
- Python will realize this, and if a is True won't bother with the rest of the expression

Causing Errors

• This can lead to "new" errors in old code

AN HONORS UNIVERSITY IN MARYLAND

Programming Languages

"Levels" of Languages

- Machine Code (lowest level)
 - Code that the computer can directly execute
 - Binary (0 or 1)
- Low Level Language
 - Interacts with the hardware of the computer
 - Assembly language
- High Level Language
 - Compiled or interpreted into machine code
 - Java, C++, Python

Compilation vs Interpretation

- Compiler
 - A complex computer program that takes another program and translates it into machine language
 - Compilation takes longer, but programs run faster
- Interpreter
 - Simulates a computer that can understand a high level language
 - Allows programming "on the fly"

Announcements

- Homework 6 out on Blackboard
 - Homework due Friday, April 28th @ 8:59:59 PM
- Project 3 will be out Saturday
 - Also going to be on recursion
- Final exam is Friday, May 19th from 6 to 8 PM