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CMSC201
Computer Science I for Majors

Lecture 22 – Binary (and More)
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Last Class We Covered

• Dictionaries

– Creating

– Accessing

– Manipulating

– Methods

• Dictionaries vs Lists
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Any Questions from Last Time?
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Today’s Objectives

• To understand how data is represented 
and stored in memory

–Binary numbers

• Floating point errors

–ASCII values

• To see the benefits of short circuit evaluation

• To learn about other programming languages
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Binary Numbers



www.umbc.edu

Binary Numbers

• Computers store all information (code, text, 
images, sound,) as a binary representation

– “Binary” means only two parts: 0 and 1

• Specific formats for each file help the 
computer know what type of item/object it is

• But why use binary? 
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Decimal vs Binary

• Why do we use decimal numbers?

– Ones, tens, hundreds, thousands, etc. 

• But computers don’t have fingers…

– What do they have instead?

• They only have two states: “on” and “off”
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Decimal Example

• How do we represent a number like 50,932?

8

5

104

0

103

9

102

3

101

2

100

Decimal uses 10 digits, so…

2 x 100 =     2

3 x 101 =    30

9 x 102 =   900

0 x 103 =  0000

5 x 104 = 50000

------

Total:   50932
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Another Decimal Example
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6 7 4 9 3

104 103 102 101 100

10000 1000 100 10 1

60000 7000 400 90 3

60000+7000+400+90+3 = 67493
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Binary Example

• Let’s do the same with 10110 in binary

10

1

24

0

23

1

22

1

21

0

20

Binary uses 2 digits, so our base isn’t 10, but…

0 x 20 =  0

1 x 21 =  2

1 x 22 =  4

0 x 23 =  0

1 x 24 = 16

--

Total: 22
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Binary to Decimal Conversion
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• Step 1: Draw Conversion Box
• Step 2: Enter Binary Number
• Step 3: Multiply
• Step 4: Add 

29 28 27 26 25 24 23 22 21 20

512 256 128 64 32 16 8 4 2 1

1 0 1 0 0 0 1 1 0 1

512 0 128 0 0 0 8 4 0 1

128 + 0 + 0 + 0 + 8 + 4 + 0 + 1 = 141
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Exercise: Converting From Binary
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• What are the decimals equivalents of…

101       

1111      

100000    

101010    

0010 1010 

1000 0000

Longer binary numbers are 
often broken into blocks of 
four digits for the sake of 

readability
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Exercise: Converting From Binary
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• What are the decimals equivalents of…

101       = 4+0+1        = 5

1111      = 8+4+2+1      = 15

100000    = 32+0+0+0+0+0 = 32

101010    = 32+0+8+0+2+0 = 42

0010 1010 = 32+0+8+0+2+0 = 42

1000 0000 = 128+...+0+0 = 128
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Decimal to Binary Conversion
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• Step 1: Draw Conversion Box
• Step 2: Compare decimal to highest  binary value
• Step 3: If binary value is smaller, put a 1 there and 

subtract the value from the decimal number
• Step 4: Repeat until 0

29 28 27 26 25 24 23 22 21 20

512 256 128 64 32 16 8 4 2 1

Convert 163 to binary

163-128 = 35 35-32 = 3 3-2=1 1-1=0

1 0 1 11 0 0 0
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Converting to Binary

• What are the binary equivalents of…

9

27

68

216

255
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Converting to Binary

• What are the binary equivalents of…

9    = 1001 (or 8+1)

27   = 0001 1011 (or 16+8+2+1)

68   = 0100 0100 (or 64+4)

216  = 1101 1000 

(or 128+64+16+8)

255  = 1111 1111

(or 128+64+32+16+8+4+2+1)
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Binary Tips and Tricks

• Some “sanity checking” rules for conversions:

1. Binary can only be 1 or 0

– If you get “2” of something, it’s wrong

2. Odd numbers must have a 1 in the ones column

– Why?  (And what’s the rule for even numbers?)

3. Each column’s value is the sum of all of the 
previous columns (to the right) plus one

– In decimal, what column comes after 999?
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Floating Point Errors
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Division: Floats and Integers

• Floats (decimals) and integers (whole 
numbers) behave in two different ways in 
Python

– And in many other programming languages

• Biggest difference is how division works

– Python 3 automatically performs decimal division

• Have to explicitly call integer division

– Floats also automatically perform decimal division
19
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Division Examples

• What do the following expressions evaluate to?

1. 4 /  3

2. 4 // 3

3. 4 // 3.0

4. 8 /  3

5. 8 /  2

6. 5 /  7

7. 5 // 7

20

= 1.3333333333333333

= 1

= 1.0

= 2.6666666666666667

= 4.0

= 0.7142857142857143

= 0



www.umbc.edu

Floating Point Errors

• In base 10, some numbers are approximated:

– 0.66666666666666666666666667…

– 3.14159265358979323846264338328…

• The same is true for base 2

– 0.00011001100110011001100… (0.1 in base 10)

• This leads to rounding errors with floats

– General rule: Don’t compare floats for equality 
after you’ve done division on them!
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ASCII Values
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ASCII Values

• ASCII is how text is represented in computers

– Just like binary is how numbers are represented

• In ASCII, every character has a unique,  
individual numerical code

– Lowercase and uppercase characters are separate

– Codes go from 0 to 127

• Why 127?
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“control” 
characters

symbols & 
numbers

uppercase 
letters

lowercase 
letters
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Comparing Strings

• The values of the ASCII characters are used 
when comparing strings together

– Which can lead to some “weird” results
>>> "cat" < "dog"

True

>>> "cat" < "Dog"

False

>>> "DOG" < "dog"

True

26
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More on Comparing Strings

• Gets even more complex when you start 
adding in numbers and symbols
>>> "2" < "one"

True

>>> "good?" < "good!"

False

>>> "UK" < "U.K."

False
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Rules for Comparisons

• To avoid (some) of these issues:

• Always use .lower() for comparing strings

• Pay attention to symbols

– e.g., spaces, hyphens, punctuation, etc.

– Either remove them, or keep as part of the order

28
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ASCII Characters to ASCII Values

• We can convert between ASCII characters and 
their values using ord() and chr()

• The ord() function takes in a single
character, and returns its ASCII value

• The chr() function takes in an integer, 
and returns its ASCII character

29
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Using chr() and ord()

>>> chr(65)

'A'

>>> chr(65+32)

'a'

>>> ord('?')

63

>>> ord("d")

100

>>> ord("e")

101

30
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“Short Circuit” Evaluation
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Review: Complex Expressions

• We can put multiple operators together!
bool4 = a and (b or c)

• What does Python do first?

– Computes (b or c)

– Computes a and the result

32

This isn’t 
strictly true!



www.umbc.edu

Short Circuit Evaluation

• Python tries to be efficient (i.e., lazy), and so it 
won’t do any more work than necessary

– If the remainder of an expression won’t change 
the outcome, Python doesn’t look at it

– This is called “short circuiting”

• “and” statements short circuit as soon as an 
expression evaluates to False

• “or” statements short circuit as soon as an 
expression evaluates to True

33
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Short Circuiting – and

• Notice that in the expression:

bool1 = a and (b or c)

• If a is False

• The rest of the expression doesn’t matter

• Python will realize this, and if a is False

won’t bother with the rest of the expression

34
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Short Circuiting – or

• Notice that in the expression:

bool1 = a or (b or c)

• If a is True

• The rest of the expression doesn’t matter

• Python will realize this, and if a is True

won’t bother with the rest of the expression
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Causing Errors

• This can lead to “new” errors in old code
>>> a = True

>>> # Variables b and c not defined

>>> a or (b and c)

True

>>> a = False

>>> a or (b and c)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'b' is not defined

36

Python stopped at 
the “or”, so it never 

saw b or c
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Programming Languages



www.umbc.edu

“Levels” of Languages

• Machine Code (lowest level)

– Code that the computer can directly execute

– Binary (0 or 1)

• Low Level Language

– Interacts with the hardware of the computer

– Assembly language

• High Level Language

– Compiled or interpreted into machine code

– Java, C++, Python

38
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Compilation vs Interpretation

• Compiler

– A complex computer program that takes another 
program and translates it into machine language

– Compilation takes longer, but programs run faster

• Interpreter

– Simulates a computer that can understand a high 
level language

– Allows programming “on the fly”

39
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Announcements

• Homework 6 out on Blackboard

– Homework due Friday, April 28th @ 8:59:59 PM

• Project 3 will be out Saturday

– Also going to be on recursion

• Final exam is Friday, May 19th from 6 to 8 PM
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