
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 22 – Binary (and More)

www.umbc.edu

Last Class We Covered

• Dictionaries

– Creating

– Accessing

– Manipulating

– Methods

• Dictionaries vs Lists

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To understand how data is represented
and stored in memory

–Binary numbers

• Floating point errors

–ASCII values

• To see the benefits of short circuit evaluation

• To learn about other programming languages

4

www.umbc.edu5

Binary Numbers

www.umbc.edu

Binary Numbers

• Computers store all information (code, text,
images, sound,) as a binary representation

– “Binary” means only two parts: 0 and 1

• Specific formats for each file help the
computer know what type of item/object it is

• But why use binary?

6

www.umbc.edu

Decimal vs Binary

• Why do we use decimal numbers?

– Ones, tens, hundreds, thousands, etc.

• But computers don’t have fingers…

– What do they have instead?

• They only have two states: “on” and “off”

7

www.umbc.edu

Decimal Example

• How do we represent a number like 50,932?

8

5

104

0

103

9

102

3

101

2

100

Decimal uses 10 digits, so…

2 x 100 = 2

3 x 101 = 30

9 x 102 = 900

0 x 103 = 0000

5 x 104 = 50000

Total: 50932

www.umbc.edu

Another Decimal Example

9

6 7 4 9 3

104 103 102 101 100

10000 1000 100 10 1

60000 7000 400 90 3

60000+7000+400+90+3 = 67493

www.umbc.edu

Binary Example

• Let’s do the same with 10110 in binary

10

1

24

0

23

1

22

1

21

0

20

Binary uses 2 digits, so our base isn’t 10, but…

0 x 20 = 0

1 x 21 = 2

1 x 22 = 4

0 x 23 = 0

1 x 24 = 16

--

Total: 22

www.umbc.edu

Binary to Decimal Conversion

11

• Step 1: Draw Conversion Box
• Step 2: Enter Binary Number
• Step 3: Multiply
• Step 4: Add

29 28 27 26 25 24 23 22 21 20

512 256 128 64 32 16 8 4 2 1

1 0 1 0 0 0 1 1 0 1

512 0 128 0 0 0 8 4 0 1

128 + 0 + 0 + 0 + 8 + 4 + 0 + 1 = 141

www.umbc.edu

Exercise: Converting From Binary

12

• What are the decimals equivalents of…

101

1111

100000

101010

0010 1010

1000 0000

Longer binary numbers are
often broken into blocks of
four digits for the sake of

readability

www.umbc.edu

Exercise: Converting From Binary

13

• What are the decimals equivalents of…

101 = 4+0+1 = 5

1111 = 8+4+2+1 = 15

100000 = 32+0+0+0+0+0 = 32

101010 = 32+0+8+0+2+0 = 42

0010 1010 = 32+0+8+0+2+0 = 42

1000 0000 = 128+...+0+0 = 128

www.umbc.edu

Decimal to Binary Conversion

14

• Step 1: Draw Conversion Box
• Step 2: Compare decimal to highest binary value
• Step 3: If binary value is smaller, put a 1 there and

subtract the value from the decimal number
• Step 4: Repeat until 0

29 28 27 26 25 24 23 22 21 20

512 256 128 64 32 16 8 4 2 1

Convert 163 to binary

163-128 = 35 35-32 = 3 3-2=1 1-1=0

1 0 1 11 0 0 0

www.umbc.edu

Converting to Binary

• What are the binary equivalents of…

9

27

68

216

255

15

www.umbc.edu

Converting to Binary

• What are the binary equivalents of…

9 = 1001 (or 8+1)

27 = 0001 1011 (or 16+8+2+1)

68 = 0100 0100 (or 64+4)

216 = 1101 1000

(or 128+64+16+8)

255 = 1111 1111

(or 128+64+32+16+8+4+2+1)

16

www.umbc.edu

Binary Tips and Tricks

• Some “sanity checking” rules for conversions:

1. Binary can only be 1 or 0

– If you get “2” of something, it’s wrong

2. Odd numbers must have a 1 in the ones column

– Why? (And what’s the rule for even numbers?)

3. Each column’s value is the sum of all of the
previous columns (to the right) plus one

– In decimal, what column comes after 999?

17

www.umbc.edu18

Floating Point Errors

www.umbc.edu

Division: Floats and Integers

• Floats (decimals) and integers (whole
numbers) behave in two different ways in
Python

– And in many other programming languages

• Biggest difference is how division works

– Python 3 automatically performs decimal division

• Have to explicitly call integer division

– Floats also automatically perform decimal division
19

www.umbc.edu

Division Examples

• What do the following expressions evaluate to?

1. 4 / 3

2. 4 // 3

3. 4 // 3.0

4. 8 / 3

5. 8 / 2

6. 5 / 7

7. 5 // 7

20

= 1.3333333333333333

= 1

= 1.0

= 2.6666666666666667

= 4.0

= 0.7142857142857143

= 0

www.umbc.edu

Floating Point Errors

• In base 10, some numbers are approximated:

– 0.66666666666666666666666667…

– 3.14159265358979323846264338328…

• The same is true for base 2

– 0.00011001100110011001100… (0.1 in base 10)

• This leads to rounding errors with floats

– General rule: Don’t compare floats for equality
after you’ve done division on them!

21

www.umbc.edu22

ASCII Values

www.umbc.edu

ASCII Values

• ASCII is how text is represented in computers

– Just like binary is how numbers are represented

• In ASCII, every character has a unique,
individual numerical code

– Lowercase and uppercase characters are separate

– Codes go from 0 to 127

• Why 127?

23

www.umbc.edu24 Image from wikimedia.org

www.umbc.edu25 Image from wikimedia.org

“control”
characters

symbols &
numbers

uppercase
letters

lowercase
letters

www.umbc.edu

Comparing Strings

• The values of the ASCII characters are used
when comparing strings together

– Which can lead to some “weird” results
>>> "cat" < "dog"

True

>>> "cat" < "Dog"

False

>>> "DOG" < "dog"

True

26

<

Images from publicdomainpictures.net

www.umbc.edu

More on Comparing Strings

• Gets even more complex when you start
adding in numbers and symbols
>>> "2" < "one"

True

>>> "good?" < "good!"

False

>>> "UK" < "U.K."

False

27

www.umbc.edu

Rules for Comparisons

• To avoid (some) of these issues:

• Always use .lower() for comparing strings

• Pay attention to symbols

– e.g., spaces, hyphens, punctuation, etc.

– Either remove them, or keep as part of the order

28

www.umbc.edu

ASCII Characters to ASCII Values

• We can convert between ASCII characters and
their values using ord() and chr()

• The ord() function takes in a single
character, and returns its ASCII value

• The chr() function takes in an integer,
and returns its ASCII character

29

www.umbc.edu

Using chr() and ord()

>>> chr(65)

'A'

>>> chr(65+32)

'a'

>>> ord('?')

63

>>> ord("d")

100

>>> ord("e")

101

30

www.umbc.edu31

“Short Circuit” Evaluation

www.umbc.edu

Review: Complex Expressions

• We can put multiple operators together!
bool4 = a and (b or c)

• What does Python do first?

– Computes (b or c)

– Computes a and the result

32

This isn’t
strictly true!

www.umbc.edu

Short Circuit Evaluation

• Python tries to be efficient (i.e., lazy), and so it
won’t do any more work than necessary

– If the remainder of an expression won’t change
the outcome, Python doesn’t look at it

– This is called “short circuiting”

• “and” statements short circuit as soon as an
expression evaluates to False

• “or” statements short circuit as soon as an
expression evaluates to True

33

www.umbc.edu

Short Circuiting – and

• Notice that in the expression:

bool1 = a and (b or c)

• If a is False

• The rest of the expression doesn’t matter

• Python will realize this, and if a is False

won’t bother with the rest of the expression

34

www.umbc.edu

Short Circuiting – or

• Notice that in the expression:

bool1 = a or (b or c)

• If a is True

• The rest of the expression doesn’t matter

• Python will realize this, and if a is True

won’t bother with the rest of the expression

35

www.umbc.edu

Causing Errors

• This can lead to “new” errors in old code
>>> a = True

>>> # Variables b and c not defined

>>> a or (b and c)

True

>>> a = False

>>> a or (b and c)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'b' is not defined

36

Python stopped at
the “or”, so it never

saw b or c

www.umbc.edu37

Programming Languages

www.umbc.edu

“Levels” of Languages

• Machine Code (lowest level)

– Code that the computer can directly execute

– Binary (0 or 1)

• Low Level Language

– Interacts with the hardware of the computer

– Assembly language

• High Level Language

– Compiled or interpreted into machine code

– Java, C++, Python

38

www.umbc.edu

Compilation vs Interpretation

• Compiler

– A complex computer program that takes another
program and translates it into machine language

– Compilation takes longer, but programs run faster

• Interpreter

– Simulates a computer that can understand a high
level language

– Allows programming “on the fly”

39

www.umbc.edu

Announcements

• Homework 6 out on Blackboard

– Homework due Friday, April 28th @ 8:59:59 PM

• Project 3 will be out Saturday

– Also going to be on recursion

• Final exam is Friday, May 19th from 6 to 8 PM

40

